Mechanics studies how forces affect bodies in motion--how, for example, a bullet is fired from a gun, or a top is set in motion by the flick of a wrist. This course will introduce the student to the core concepts of mechanics as applied to design, testing, and manufacture of safe and reliable products. Upon successful completion of this course, the student will be able to: Identify and use units, notations, and vectors used in mechanics; Identify and explain the concepts of forces, couples, and moments; Use the concept of forces and moments to compute resultants and equivalent systems in mechanics; Analyze mechanics of rigid bodies, such as trusses, frames, and machines; Identify and explain the concepts of friction and internal forces; Compute material properties of solid bodies, such as moments of inertia and mass moments of inertia; Compute strain and stress and understand the relationship of stress and strain for both elastic and plastic bodies; Compute stresses and strain in bodies subjected to tension and torsion; Compute stresses and strain in pressure vessels and composites; Identify and explain the concept of stress tensor and the constitutive relationship between strain and stress; Compute stresses and strain in simple and composite beams due to bending; Explain how stress is computed experimentally or using finite element formulations; Identify and explain material failure scenarios, such as fracture, fatigue, creep, and buckling. (Mechanical Engineering 102)